抽屉原理教学案例 抽屉原理教学设计一等奖

《抽屉原理教学案例 抽屉原理教学设计一等奖》属于教学设计中比较优秀的内容,欢迎参考。

抽屉原理教学案例 抽屉原理教学设计一等奖

1、抽屉原理教学案例 抽屉原理教学设计一等奖

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。接下来小编为大家整理了一份关于抽屉原理教学设计9篇的相关介绍,供大家参考。

【教学内容】

《义务教育课程标准实验教科书·数学》六年级下册。

【教材分析】

让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。

【学情分析】

教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】

每组都有3个文具盒和4枝铅笔。

【教学过程】

一、谈话导入

教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。

板书:抽屉原理

教师:通过学习,你想解决那些问题?

根据学生回答,教师把学生提出的问题归结为:“抽屉原理”是怎样的?这里的“抽屉”是指什么?运用“抽屉原理”能解决那些问题?怎样运用“抽屉原理”解决实际问题?

二、通过操作,探究新知

(一)认识“抽屉原理”

出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

师:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)(3,1,0) (2,2,0)(2,1,1),

师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,

生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?……

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

(二)探究新知

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本2个2本……余1本(总有一个抽屉里至有3本书)

7本2个3本……余1本(总有一个抽屉里至有4本书)

9本2个4本……余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)

7÷2=3本……1本(商加1)

9÷2=4本……1本(商加1)

师:观察板书你能发现什么?

生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们同意吧?

师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为5÷4=1…1

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为9÷4=2…1

四、全课小结

上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。

五、思维训练

1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔……十二种生肖)相同。说明理由。

2.任意367名学生中,一定存在两名学生,他们在同一天过生日。说明理由。

【教学反思】

1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。

2、理解“抽屉原理”对于学生来说有着一定的难度。

3、部分学生很难判断谁是物体,谁是抽屉。

【知识技能】

1.理解最简单的抽屉原理及抽屉原理的一般形式。

2.引导学生采用操作的方法进行枚举及假设法探究。

【过程方法】

经历抽屉原理的探究过程,初步了解抽屉原理。

【情感态度价值观】

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学过程】

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思?(一定有)

(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

教学目标:

1.知识与能力目标:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

2.过程与方法目标:

经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。

教学过程:

一、游戏激趣,初步体验。

师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?

二、操作探究,发现规律。

(一)经历“抽屉原理”的探究过程,理解原理。

1.研究小棒数比杯子数多1的情况。

师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子

师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?

学生分组操作,并把操作的结果记录下来。

请一个小组汇报操作过程,教师在黑板上记录。

师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?板书:总有一个杯子里至少有。

师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?

学生分组操作,并把操作的结果记录下来。

请一个小组代表汇报操作过程,教师在黑板上记录。

师:观察所有的摆法,你发现了什么?这里的“总有”是什么意思?“至少”又是什么意思?

师:那如果把6根小棒放在5个杯子里,猜一猜,会有什么样的结果?

师:怎样验证猜测的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:6÷5=1……1

师:那如果用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果呢?你又从中发现了什么规律呢?

师:我们发现了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那如果小棒的数量比杯子的数量多2、多3,又会有什么样的结果呢?

2、研究小棒数比杯子数多2、多3的情况。

师:如果把5根小棒放在3个杯子里,会有什么结果?

引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢?

师:把7根小棒放在3个杯子里,会有什么结果呢?为什么?

3、研究小棒数比杯子数的2倍多、3倍多…等情况。

师:如果把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果?

小组内讨论,再请同学说结果和理由。

4、总结规律。

师:我们将小棒看做物体、把杯子看做抽屉,你发现了什么规律?

总结:把m个物体放在n个抽屉里(m﹥n),总有一个抽屉至少有“商+1”个物体。

5、介绍抽屉原理。

“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

三、应用“抽屉原理”,感受数学的魅力。

1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么?

先思考:这里是把什么看做物体?什么看做抽屉?再说结果和理由。

2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

3、向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人是同一个月出生的。

4、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

5、师:开课时我们做的游戏还记得吗?为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?

四、全课小结。

说一说:今天这节课,我们又学习了什么新知识?(师生共同对本节课的内容进行小结)

五、布置作业。

课本73页练习十二第2、4题。

六、板书设计。

数学广角——抽屉原理

物体数÷抽屉数= 商……余数 至少数 =商+1

小棒 杯子 总有一个杯子里至少有

3 2 2

4 3 2

6 ÷ 5 = 1……1 2

5 ÷ 3 = 1……2 2

7 ÷ 4 = 1……3 2

9 ÷ 4 = 2……1 3

15 ÷ 4 = 3……3 4

教学反思:

1、通过游戏,激发兴趣。

兴趣是最好的老师。课前我设计了从52张扑克牌(去掉2张王牌)中任意抽取5张,老师肯定地说:至少有2张牌是同一花色的,在学生半信半疑时,师生共同游戏,让学生信服,但又不知道其中奥妙,这样导入,学生兴趣盎然。

2、操作探究,建立模型。

本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4根小棒放入3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生借助直观,很好的理解了如果把物体尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少,余下的不管放到哪个抽屉里,总有一个抽屉里比平均分得的数量多1。特别是对“某个抽屉至少有的数量”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

3、解释应用,深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在应用“抽屉原理”,感受数学的魅力环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。

反思本节课的教学,有以下几点不足:

1、在把3根小棒放进2个杯子,把4根小棒放进3个杯子里,都让学生进行了操作并做了记录,但对学生的有序思考重视不够,导致课堂检测时,学生用列举法解决问题的时候,有两个同学把所有的可能都列举对了,但不是有序排列的。还有两个差一点的学生由于思维无序,因此没能正确列举出来。

2、在把5根小棒放在3个杯子里,有学生出现了总有一个杯子里至少有3根小棒的结论,可能是用5÷3=1……2,1+2=3,也就是很多同学容易出的错误:用商+余数。这时老师没有抓住这个同学思维中的错误制造思维矛盾,因此感觉学生对总有一个抽屉至少有的数量=商+1这一知识点的理解还不够透彻。

3学生在用“抽屉原理” 解决实际问题时,书写格式教师指导不到位。有些题目是要先说结论,再说理由。那么说理由的时候,有的同学只列了算式,如:5÷3=1……2,1+1=2,还有的同学先列算式,再回答问题。在区教研室周俊主任的指导下,我才明白这类题目的书写格式是:因为5÷3=1(根)……2(根),1+1=2(根),所以每个杯子里至少有2根小棒。

总的说来,本节课学生的学习效果还不错,全班学生针对这类问题都能快速做出正确分析与判断。我也算圆满完成了这节课的学习目标,实现了三维目标的有机整合。

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

教学理念:

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

教学目标:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重难点:

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)

二、通过操作,探究新知

(一)探究例1

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。

这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

(二)探究例2

1、研究把5本书放进2个抽屉。

(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)

(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

(4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

5、做一做:

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

(先让学生独立思考,在小组里讨论,再全班反馈)

三、迁移与拓展

下面我们一起来放松一下,做个小游戏。

我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

四、总结全课

这节课,你有什么收获?

教材分析

《抽屉原理的认识》是人教版数学六年级下册第五章内容。在数学问题中有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。、

学情分析

本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。

教学目标

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展 的类推能力,形成抽象的数学思维。

3、通过“抽屉原理”的灵活应用,感受数学的魅力。

教学重点和难点

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学内容:

教科书第68、69页例1、2。

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

教学重点:分配方法。

教学难点:分配方法。

教学方法:列举法 分析法

学习方法:尝试法 自主探究法

教学用具:课件

教学过程:

一、 定向导学(3分)

(一)游戏引入

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(二)揭示目标

理解并掌握解决鸽巢问题的解答方法。

二、 自主学习(8分)

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

三、合作交流(8)

1、出示例2

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1 (至少放3本)

8÷3=2……2 (至少放4本)

10÷3=3……1 (至少放5本)

4、做一做

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

四、质疑探究(5分)

1、鸽巢问题怎样求?

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

五、小结检测(10)

(一)小结

鸽巢问题的解答方法是什么?

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测

1、填空

( 1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。

( 2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。 4、任意给出3个不同的自然数,其中一定有2个数的和是( )数。

2、选择

(1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。 a、60 b、61 c、62 d、59

(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。 a、3 b、4 c、5 d、无法确定

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业 (6分)

完成课本练习十二第2、4题。

板书

抽屉原理

物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

教学内容:人教版六年级下册第五单元数学广角

教学目标:

1、初步了解“抽屉原理”。

2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。

3、会用抽屉原理解决简单的实际问题。

4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的学习方法。

教学重点:抽屉原理的理解和简单应用。

教学难点:找出实际问题与抽屉原理的内在联系。

教学过程:

一、开展小游戏,引入新课。

师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?

师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?

生:对!

师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。

二、实验探索

第一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?

1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生示范)你们又能从这些放法中发现什么有趣的现象?

2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。

放法

文具盒1

文具盒2

文具盒3

最多放几枝

我们的发现

3、小组汇报交流。

(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

生:不管怎么放,总有1个文具盒里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有。

师:“至少”是什么意思?

生:不少于2枝,可能是3枝或4枝。

生小结:把4枝铅笔放进3个文具盒,总有一个文具盒至少放进2枝铅笔。(最多有2枝或2枝以上)

4、师:把4枝笔饭放进3个文具盒里,不管怎么放,总有一个文具盒里至少有2枝铅笔。这是我们通过实际操作发现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找出至少数呢?

生:我们发现如果每个文具盒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个文具盒里,总有一个文具盒里至少有2枝铅笔。

(学生操作演示)

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?

生1:要想发现存在着“总有一个文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那个文具盒里,一定会出现“总有一个文具盒里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个文具盒至少有几枝笔了。

把笔尽量每个文具盒里都放,还要尽量平均放。怎样用算式表示呢?

4÷3=1……11+1=2

5、那照这样的思路:把6枝铅笔放进5个文具盒,怎样想?(用铅笔操作演示)6÷5=1……11+1=2

把7枝铅笔放进6个文具盒,怎样想?……

100枝铅笔放进99个文具盒呢?

师提问:发现了什么规律?

生小结,师整理:铅笔数比文具盒数多1,不管怎么放,总有一个文具盒里至少放进2枝铅笔。(同桌之间说一说)

第二步:研究铅笔数比文具盒数不是多1的现象。

1、师:研究到这儿,还想继续研究吗?还有哪些值得我们继续研究的问题?(生自主提问:如不是多1,什么是抽屉原理等等。)

2、师:如果铅笔数比文具盒数不是多1,而是多2、3……,总有一个文具盒里至少会有几枝铅笔?

(出示:把5本书放进2个抽屉里,总有一个抽屉里至少会有几本书呢?)

生独立思考,在小组内交流,汇报。

师:许多同学都没有再摆学具,用的什么方法?

生:平均分。把5本书平均分到2个抽屉里,每个抽屉里放2本书,还剩一本书,无论放在哪个抽屉里,总有一个抽屉里至少有3本书。生:5÷2=2……12+1=3

(出示:5本书放进3个抽屉呢?8本书放进5个抽屉呢?)

5÷3=1……21+1=28÷5=1……31+3=4

师:至少数为什么不是“商+余数”?(小组讨论,汇报)

4、对比观察算式,你能发现求至少数的规律吗?

物体数÷抽屉数=商……余数至少数=商+1

5、总结抽屉原理,运用抽屉原理的关键是什么?(找准物体数和抽屉数),阅读相关资料。

a÷n=b……c(c≠0)把a个物体放进n个抽屉里,总有一个抽屉里至少放进(b+1)个物体。

三、应用原理。

1、请你试一试。(口答,指出什么是物体数,什么是抽屉数)

(1)6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一鸽舍,为什么?

(2)把13只小兔关在5个笼中,至少有几只兔子要关在同一个笼里?

(3)有5袋饼干,每袋10快,发给6个小朋友,总有一个小朋友至少分到几块饼干?

2、下面的说法对吗?说说你的理由。

向东小学6年级共有370名学生,其中六(2)班有49名学生。

A、六年级里至少有2名学生的生日是同一天。

(370个物体,366个抽屉)

B、六(2)班只有5名学生的生日在同一月。

(49个物体,12个抽屉,“只有”就是一定)

C、六(2)至少有25位学生是同一性别。

3、玩“猜扑克”的游戏。

抽掉大小王,抽出5张牌,至少几张是同花色?5÷4=1……11+1=2

抽15张至少有几张数字相同?15÷13=1……21+1=2

4、学生把学生生活中能用抽屉原理解释的现象写下来。

留心观察+细心思考=伟大发现

四、全课总结。

【设计理念】

本课通过创设情境、直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。

【教学内容】

《义务教育课程标准实验教科书数学》六年级下册第70--71页的内容。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学准备】多媒体课件、每组准备13枚“金币”和5个杯子。

【教学课时】 一课时

【教学过程】

一.创设情景,引入新课。

在研究新课之前得先请同学们见见自己的老朋友,看看谁还认识他?

出示图片——鲁滨逊画像。

二.创设平台,合作探究。

一).探索比抽屉数多1的至少数。

话说鲁宾逊完全不顾父愿,甚至违抗父命,也全然不听母亲的恳求和朋友们的劝阻,一意孤行开始了他的冒险之旅。一天拂晓,当他所乘坐的正驶向加那利群岛时,被一艘土耳其海盗船袭击,所有船员全部被俘。鲁宾逊被海盗船长作为自己的战利品留了下来,成了船长的奴隶。这一日,海盗们没有出海,懒洋洋的在岸上休息,船长命令鲁宾逊给海盗们传授些文明人的知识,让海盗们变得像鲁宾逊一样富有智慧。看着桌子上闪闪发光的金币,鲁宾逊想到了一个办法,他找来两个盒子:

出示例一:

1.把3枚金币放入2个盒子里,有几种放法?

学生拿起自己手中的学具做实验,小组讨论后发言,其他同学可以补充。

如果每个盒子里最少放一枚,要使所有金币都放进盒子里,不管怎么放,总有一个盒子里至少有几枚金币?

2.师:把4枚金币都放进3个盒子里,有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?这种分法,实际就是先怎么分的?为什么要先平均分?(组织学生讨论)

小结: 用最不利原则设想,如果我们先让每个笔筒里放1枚金币,最多放3枚。剩下的1枚还要放进其中的一个笔筒。所以不管怎么放,总有一个笔筒里至少放进2枚金币。

二).探索比抽屉数多几的'至少数。

师:那么把13枚金币放进3个盒子里呢?

(可以结合操作说一说)

师:把13枚金币放进5个盒子里呢?

(留给学生思考的空间,师巡视了解各种情况)

师:这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,得到这个结论呢?请同学们观察板书,小组研究、讨论。找一找其中的规律。

小结:至少数等于数的本数除以抽屉数,再用所得的商加1。

(板书:至少数=商+1)

三).解析原理,加深认识

师:同学们的这一发现,称为“抽屉原理”。抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称作“鸽巢原理”。

出示:7只鸽子飞回5个鸽舍,至少有两只鸽子飞进同一个鸽舍?学生回答后观看演示。

三.应用原理,解决问题。

一).巩固应用一——扑克牌游戏

16世纪的海盗们哪能摸得清什么抽屉原理呢?一听原理二字便昏头涨脑,不知什么时候早在下面玩起了扑克牌。这时,鲁宾逊灵机一动,将大家正玩的扑克牌中的大小王拿掉,说:每人抽五张牌,不管怎么抽取,至少有两张是同一花色的牌,你们相信吗?说着,给坐在旁边的海盗甲海盗乙每人任意抽取了5张牌。“如果有一个人手里的牌都不是同一花色,任由船长处置;如果每个人手里最少有2张花色相同的牌,请船长允许我回故乡赫尔去吧。”船长眼珠一转,同意了鲁宾逊的要求。

那么,事实是不是这样呢?同学们相信鲁宾逊的话吗?

教师发扑克牌,学生回答。

二).巩固应用二——分宝1

鲁宾逊虽然证实了自己是正确的,可是狡猾的船长并没有答应他的要求,放他回家。鲁宾逊只好跟着海盗首领到处掠夺杀戮。

有一次,他们获得了很多宝贝,海盗首领非常高兴,对手下8个小海盗说,这些宝贝都给你们了,你们自己处理吧,没想到小海盗平时都抢惯了,一拥而上,有人拿得很多,有人很少,甚至有人一件宝贝也没拿到,看到小海盗们乱哄哄的样子,海盗首领非常生气,就想惩罚一下那些贪婪的海盗,机会终于来了!有一次:海盗们又获得了73件宝贝,海盗首领又叫8个小海盗自己分。且规定:1、必须分完。2、若某人拿10件或10件以上的宝贝,说明他是个过分贪婪的人,就把他扔进大海喂鲨鱼。

海盗们是否都能逃过这一劫呢?小组讨论后派代表说说想法,其他同学可以补充。无论怎样分,总有一个海盗至少会拿到10件,这个海盗怎么办呢?学生自由谈看法。

师:正在海盗们担心的时候,事情有了转机,聪明的鲁宾逊趁着天黑偷偷地把一件宝贝扔进大海,现在只剩下72件宝贝,大家都平安无事。

三).巩固应用三——分宝2

师:海盗们终于逃过一劫,海盗首领回到自己屋里,闷闷不乐,夫人问他为什么不开心,海盗首领如实相告,夫人说是不是有人把一件宝贝扔到海里去了,海盗首领如梦方醒,决心下一次不再上当,又是在一个风急天黑的夜晚:海盗们获得了79件宝贝,首领还是要8个小海盗自己分,规则不变,还警告,79件宝贝已数得清清楚楚,谁要是作弊,也要受到惩罚。

师:小海盗们大惊失色,心想这下可能真的逃不过去了,只有聪明的鲁宾逊镇定自若,站出来对海盗首领说,既然宝贝比上次增加了6件,能不能把限定的10件提高1件?海盗首领心想,宝贝增加这么多,而限定只提高1件,还是肯定有人会受到惩罚,就同意了小海盗的请求。你认为首领的想法对吗?说说你是怎样想的。

学生先小组讨论,然后再叫几个学生来说说是怎样想的。老师再对学生的思路进行梳理。

以上我们所碰到的问题是什么问题?他的解答或证明的方法是怎样的?你能否找到被分的物品数和抽屉数?

师:靠着鲁宾逊的聪明才智,事情终于风平浪静,在以后的日子里鲁宾逊自己的智慧赢得了海盗首领的信任,有了独自驾驶小艇的权利,借着海盗首领拜访朋友的机会,鲁宾逊驾着小艇逃到了一个无人的荒岛,并搭救了一个野蛮人,起名“星期五”,有一天,他们俩无所事事,玩起了游戏。

四).巩固应用4——摸球游戏

他们用一个盒子,里面装有同样大小数量相同的红、黄、蓝球各若干个,两人各自摸到自己的盘子里,想一想,最少要摸几次,才能保证一定有2个是同色的?

让学生讲讲思路,老师再对学生的思路进行梳理。

四.拓展延伸

鲁宾逊的故事今天先讲到这里,通过今天的学习你有什么收获?

五.布置作业

每人编2道抽屉类问题作为今天的作业,让自己的同桌来证明或解答。

【教学内容】

《义务教育课程标准实验教科书数学》六年级下册第68页。

【教学目标】

1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过抽屉原理的灵活应用感受数学的魅力。

【教学重点】

经历抽屉原理的探究过程,初步了解抽屉原理。

【教学难点】

理解抽屉原理,并对一些简单实际问题加以模型化。

【教具、学具准备】

每组都有相应数量的盒子、铅笔、书。

【教学过程】

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知

(一)教学例1

1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)

【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

是:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1),

师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:总有是什么意思?

生:一定有

师:至少有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考组内交流汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着总有一个盒子里一定至少有2枝,先平均分,余下1枝,不管放在那个盒子里,一定会出现总有一个盒子里一定至少有2枝。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,

生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

【点评】教师关注了抽屉原理的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

2.解决问题。

(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

(学生活动独立思考 自主探究)

(2)交流、说理活动。

师:谁能说说为什么?

生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

生2:我们也是这样想的。

生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。

师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。

师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)

师:同位之间再说一说,对这种方法的理解。

师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的理解

生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。

师:同学们都有这个发现吗?

生众:发现了。

师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本 余1本 (总有一个抽屉里至有3本书)

7本 2个 3本 余1本(总有一个抽屉里至有4本书)

9本 2个 4本 余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

52=2本1本(商加1)

72=3本1本(商加1)

92=4本1本(商加1)

师:观察板书你能发现什么?

生1:总有一个抽屉里的至少有2本只要用 商+ 1就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+ 2就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是商+1还是商+余数呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。

生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。

师:同学们同意吧?

师:同学们的这一发现,称为抽屉原理, 抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1, 而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为54=11

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为94=21

四、全课小结

【点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类抽屉问题的一般规律,使学生进一步理解掌握了抽屉原理。

以上就是小编为大家整理介绍的关于抽屉原理教学案例以及抽屉原理教学设计9篇的相关资讯,希望大家喜欢,可以为大家带来帮助。想要了解更多详情,请多多关注。

2、抽屉原理教学案例 抽屉原理教学设计

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。接下来小编为大家整理了一份关于抽屉原理教学设计9篇的相关介绍,供大家参考。

【教学内容】

《义务教育课程标准实验教科书·数学》六年级下册。

【教材分析】

让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。

【学情分析】

教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】

每组都有3个文具盒和4枝铅笔。

【教学过程】

一、谈话导入

教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。

板书:抽屉原理

教师:通过学习,你想解决那些问题?

根据学生回答,教师把学生提出的问题归结为:“抽屉原理”是怎样的?这里的“抽屉”是指什么?运用“抽屉原理”能解决那些问题?怎样运用“抽屉原理”解决实际问题?

二、通过操作,探究新知

(一)认识“抽屉原理”

出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

师:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)(3,1,0) (2,2,0)(2,1,1),

师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,

生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?……

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

(二)探究新知

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本2个2本……余1本(总有一个抽屉里至有3本书)

7本2个3本……余1本(总有一个抽屉里至有4本书)

9本2个4本……余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)

7÷2=3本……1本(商加1)

9÷2=4本……1本(商加1)

师:观察板书你能发现什么?

生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们同意吧?

师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为5÷4=1…1

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为9÷4=2…1

四、全课小结

上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。

五、思维训练

1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔……十二种生肖)相同。说明理由。

2.任意367名学生中,一定存在两名学生,他们在同一天过生日。说明理由。

【教学反思】

1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。

2、理解“抽屉原理”对于学生来说有着一定的难度。

3、部分学生很难判断谁是物体,谁是抽屉。

【知识技能】

1.理解最简单的抽屉原理及抽屉原理的一般形式。

2.引导学生采用操作的方法进行枚举及假设法探究。

【过程方法】

经历抽屉原理的探究过程,初步了解抽屉原理。

【情感态度价值观】

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学过程】

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思?(一定有)

(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

教学目标:

1.知识与能力目标:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

2.过程与方法目标:

经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。

教学过程:

一、游戏激趣,初步体验。

师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?

二、操作探究,发现规律。

(一)经历“抽屉原理”的探究过程,理解原理。

1.研究小棒数比杯子数多1的情况。

师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子

师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?

学生分组操作,并把操作的结果记录下来。

请一个小组汇报操作过程,教师在黑板上记录。

师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?板书:总有一个杯子里至少有。

师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?

学生分组操作,并把操作的结果记录下来。

请一个小组代表汇报操作过程,教师在黑板上记录。

师:观察所有的摆法,你发现了什么?这里的“总有”是什么意思?“至少”又是什么意思?

师:那如果把6根小棒放在5个杯子里,猜一猜,会有什么样的结果?

师:怎样验证猜测的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:6÷5=1……1

师:那如果用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果呢?你又从中发现了什么规律呢?

师:我们发现了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那如果小棒的数量比杯子的数量多2、多3,又会有什么样的结果呢?

2、研究小棒数比杯子数多2、多3的情况。

师:如果把5根小棒放在3个杯子里,会有什么结果?

引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢?

师:把7根小棒放在3个杯子里,会有什么结果呢?为什么?

3、研究小棒数比杯子数的2倍多、3倍多…等情况。

师:如果把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果?

小组内讨论,再请同学说结果和理由。

4、总结规律。

师:我们将小棒看做物体、把杯子看做抽屉,你发现了什么规律?

总结:把m个物体放在n个抽屉里(m﹥n),总有一个抽屉至少有“商+1”个物体。

5、介绍抽屉原理。

“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

三、应用“抽屉原理”,感受数学的魅力。

1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么?

先思考:这里是把什么看做物体?什么看做抽屉?再说结果和理由。

2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

3、向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人是同一个月出生的。

4、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

5、师:开课时我们做的游戏还记得吗?为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?

四、全课小结。

说一说:今天这节课,我们又学习了什么新知识?(师生共同对本节课的内容进行小结)

五、布置作业。

课本73页练习十二第2、4题。

六、板书设计。

数学广角——抽屉原理

物体数÷抽屉数= 商……余数 至少数 =商+1

小棒 杯子 总有一个杯子里至少有

3 2 2

4 3 2

6 ÷ 5 = 1……1 2

5 ÷ 3 = 1……2 2

7 ÷ 4 = 1……3 2

9 ÷ 4 = 2……1 3

15 ÷ 4 = 3……3 4

教学反思:

1、通过游戏,激发兴趣。

兴趣是最好的老师。课前我设计了从52张扑克牌(去掉2张王牌)中任意抽取5张,老师肯定地说:至少有2张牌是同一花色的,在学生半信半疑时,师生共同游戏,让学生信服,但又不知道其中奥妙,这样导入,学生兴趣盎然。

2、操作探究,建立模型。

本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4根小棒放入3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生借助直观,很好的理解了如果把物体尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少,余下的不管放到哪个抽屉里,总有一个抽屉里比平均分得的数量多1。特别是对“某个抽屉至少有的数量”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

3、解释应用,深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在应用“抽屉原理”,感受数学的魅力环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。

反思本节课的教学,有以下几点不足:

1、在把3根小棒放进2个杯子,把4根小棒放进3个杯子里,都让学生进行了操作并做了记录,但对学生的有序思考重视不够,导致课堂检测时,学生用列举法解决问题的时候,有两个同学把所有的可能都列举对了,但不是有序排列的。还有两个差一点的学生由于思维无序,因此没能正确列举出来。

2、在把5根小棒放在3个杯子里,有学生出现了总有一个杯子里至少有3根小棒的结论,可能是用5÷3=1……2,1+2=3,也就是很多同学容易出的错误:用商+余数。这时老师没有抓住这个同学思维中的错误制造思维矛盾,因此感觉学生对总有一个抽屉至少有的数量=商+1这一知识点的理解还不够透彻。

3学生在用“抽屉原理” 解决实际问题时,书写格式教师指导不到位。有些题目是要先说结论,再说理由。那么说理由的时候,有的同学只列了算式,如:5÷3=1……2,1+1=2,还有的同学先列算式,再回答问题。在区教研室周俊主任的指导下,我才明白这类题目的书写格式是:因为5÷3=1(根)……2(根),1+1=2(根),所以每个杯子里至少有2根小棒。

总的说来,本节课学生的学习效果还不错,全班学生针对这类问题都能快速做出正确分析与判断。我也算圆满完成了这节课的学习目标,实现了三维目标的有机整合。

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

教学理念:

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

教学目标:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重难点:

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)

二、通过操作,探究新知

(一)探究例1

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。

这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

(二)探究例2

1、研究把5本书放进2个抽屉。

(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)

(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

(4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

5、做一做:

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

(先让学生独立思考,在小组里讨论,再全班反馈)

三、迁移与拓展

下面我们一起来放松一下,做个小游戏。

我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

四、总结全课

这节课,你有什么收获?

教材分析

《抽屉原理的认识》是人教版数学六年级下册第五章内容。在数学问题中有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。、

学情分析

本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。

教学目标

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展 的类推能力,形成抽象的数学思维。

3、通过“抽屉原理”的灵活应用,感受数学的魅力。

教学重点和难点

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学内容:

教科书第68、69页例1、2。

教学目标:

1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

教学重点:分配方法。

教学难点:分配方法。

教学方法:列举法 分析法

学习方法:尝试法 自主探究法

教学用具:课件

教学过程:

一、 定向导学(3分)

(一)游戏引入

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

(二)揭示目标

理解并掌握解决鸽巢问题的解答方法。

二、 自主学习(8分)

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

三、合作交流(8)

1、出示例2

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1 (至少放3本)

8÷3=2……2 (至少放4本)

10÷3=3……1 (至少放5本)

4、做一做

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

四、质疑探究(5分)

1、鸽巢问题怎样求?

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

五、小结检测(10)

(一)小结

鸽巢问题的解答方法是什么?

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测

1、填空

( 1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。

( 2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。 4、任意给出3个不同的自然数,其中一定有2个数的和是( )数。

2、选择

(1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。 a、60 b、61 c、62 d、59

(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。 a、3 b、4 c、5 d、无法确定

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业 (6分)

完成课本练习十二第2、4题。

板书

抽屉原理

物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

教学内容:人教版六年级下册第五单元数学广角

教学目标:

1、初步了解“抽屉原理”。

2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。

3、会用抽屉原理解决简单的实际问题。

4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的学习方法。

教学重点:抽屉原理的理解和简单应用。

教学难点:找出实际问题与抽屉原理的内在联系。

教学过程:

一、开展小游戏,引入新课。

师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?

师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?

生:对!

师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。

二、实验探索

第一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?

1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生示范)你们又能从这些放法中发现什么有趣的现象?

2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。

放法

文具盒1

文具盒2

文具盒3

最多放几枝

我们的发现

3、小组汇报交流。

(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

生:不管怎么放,总有1个文具盒里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有。

师:“至少”是什么意思?

生:不少于2枝,可能是3枝或4枝。

生小结:把4枝铅笔放进3个文具盒,总有一个文具盒至少放进2枝铅笔。(最多有2枝或2枝以上)

4、师:把4枝笔饭放进3个文具盒里,不管怎么放,总有一个文具盒里至少有2枝铅笔。这是我们通过实际操作发现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找出至少数呢?

生:我们发现如果每个文具盒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个文具盒里,总有一个文具盒里至少有2枝铅笔。

(学生操作演示)

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?

生1:要想发现存在着“总有一个文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那个文具盒里,一定会出现“总有一个文具盒里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个文具盒至少有几枝笔了。

把笔尽量每个文具盒里都放,还要尽量平均放。怎样用算式表示呢?

4÷3=1……11+1=2

5、那照这样的思路:把6枝铅笔放进5个文具盒,怎样想?(用铅笔操作演示)6÷5=1……11+1=2

把7枝铅笔放进6个文具盒,怎样想?……

100枝铅笔放进99个文具盒呢?

师提问:发现了什么规律?

生小结,师整理:铅笔数比文具盒数多1,不管怎么放,总有一个文具盒里至少放进2枝铅笔。(同桌之间说一说)

第二步:研究铅笔数比文具盒数不是多1的现象。

1、师:研究到这儿,还想继续研究吗?还有哪些值得我们继续研究的问题?(生自主提问:如不是多1,什么是抽屉原理等等。)

2、师:如果铅笔数比文具盒数不是多1,而是多2、3……,总有一个文具盒里至少会有几枝铅笔?

(出示:把5本书放进2个抽屉里,总有一个抽屉里至少会有几本书呢?)

生独立思考,在小组内交流,汇报。

师:许多同学都没有再摆学具,用的什么方法?

生:平均分。把5本书平均分到2个抽屉里,每个抽屉里放2本书,还剩一本书,无论放在哪个抽屉里,总有一个抽屉里至少有3本书。生:5÷2=2……12+1=3

(出示:5本书放进3个抽屉呢?8本书放进5个抽屉呢?)

5÷3=1……21+1=28÷5=1……31+3=4

师:至少数为什么不是“商+余数”?(小组讨论,汇报)

4、对比观察算式,你能发现求至少数的规律吗?

物体数÷抽屉数=商……余数至少数=商+1

5、总结抽屉原理,运用抽屉原理的关键是什么?(找准物体数和抽屉数),阅读相关资料。

a÷n=b……c(c≠0)把a个物体放进n个抽屉里,总有一个抽屉里至少放进(b+1)个物体。

三、应用原理。

1、请你试一试。(口答,指出什么是物体数,什么是抽屉数)

(1)6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一鸽舍,为什么?

(2)把13只小兔关在5个笼中,至少有几只兔子要关在同一个笼里?

(3)有5袋饼干,每袋10快,发给6个小朋友,总有一个小朋友至少分到几块饼干?

2、下面的说法对吗?说说你的理由。

向东小学6年级共有370名学生,其中六(2)班有49名学生。

A、六年级里至少有2名学生的生日是同一天。

(370个物体,366个抽屉)

B、六(2)班只有5名学生的生日在同一月。

(49个物体,12个抽屉,“只有”就是一定)

C、六(2)至少有25位学生是同一性别。

3、玩“猜扑克”的游戏。

抽掉大小王,抽出5张牌,至少几张是同花色?5÷4=1……11+1=2

抽15张至少有几张数字相同?15÷13=1……21+1=2

4、学生把学生生活中能用抽屉原理解释的现象写下来。

留心观察+细心思考=伟大发现

四、全课总结。

【设计理念】

本课通过创设情境、直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。

【教学内容】

《义务教育课程标准实验教科书数学》六年级下册第70--71页的内容。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学准备】多媒体课件、每组准备13枚“金币”和5个杯子。

【教学课时】 一课时

【教学过程】

一.创设情景,引入新课。

在研究新课之前得先请同学们见见自己的老朋友,看看谁还认识他?

出示图片——鲁滨逊画像。

二.创设平台,合作探究。

一).探索比抽屉数多1的至少数。

话说鲁宾逊完全不顾父愿,甚至违抗父命,也全然不听母亲的恳求和朋友们的劝阻,一意孤行开始了他的冒险之旅。一天拂晓,当他所乘坐的正驶向加那利群岛时,被一艘土耳其海盗船袭击,所有船员全部被俘。鲁宾逊被海盗船长作为自己的战利品留了下来,成了船长的奴隶。这一日,海盗们没有出海,懒洋洋的在岸上休息,船长命令鲁宾逊给海盗们传授些文明人的知识,让海盗们变得像鲁宾逊一样富有智慧。看着桌子上闪闪发光的金币,鲁宾逊想到了一个办法,他找来两个盒子:

出示例一:

1.把3枚金币放入2个盒子里,有几种放法?

学生拿起自己手中的学具做实验,小组讨论后发言,其他同学可以补充。

如果每个盒子里最少放一枚,要使所有金币都放进盒子里,不管怎么放,总有一个盒子里至少有几枚金币?

2.师:把4枚金币都放进3个盒子里,有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?这种分法,实际就是先怎么分的?为什么要先平均分?(组织学生讨论)

小结: 用最不利原则设想,如果我们先让每个笔筒里放1枚金币,最多放3枚。剩下的1枚还要放进其中的一个笔筒。所以不管怎么放,总有一个笔筒里至少放进2枚金币。

二).探索比抽屉数多几的'至少数。

师:那么把13枚金币放进3个盒子里呢?

(可以结合操作说一说)

师:把13枚金币放进5个盒子里呢?

(留给学生思考的空间,师巡视了解各种情况)

师:这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,得到这个结论呢?请同学们观察板书,小组研究、讨论。找一找其中的规律。

小结:至少数等于数的本数除以抽屉数,再用所得的商加1。

(板书:至少数=商+1)

三).解析原理,加深认识

师:同学们的这一发现,称为“抽屉原理”。抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称作“鸽巢原理”。

出示:7只鸽子飞回5个鸽舍,至少有两只鸽子飞进同一个鸽舍?学生回答后观看演示。

三.应用原理,解决问题。

一).巩固应用一——扑克牌游戏

16世纪的海盗们哪能摸得清什么抽屉原理呢?一听原理二字便昏头涨脑,不知什么时候早在下面玩起了扑克牌。这时,鲁宾逊灵机一动,将大家正玩的扑克牌中的大小王拿掉,说:每人抽五张牌,不管怎么抽取,至少有两张是同一花色的牌,你们相信吗?说着,给坐在旁边的海盗甲海盗乙每人任意抽取了5张牌。“如果有一个人手里的牌都不是同一花色,任由船长处置;如果每个人手里最少有2张花色相同的牌,请船长允许我回故乡赫尔去吧。”船长眼珠一转,同意了鲁宾逊的要求。

那么,事实是不是这样呢?同学们相信鲁宾逊的话吗?

教师发扑克牌,学生回答。

二).巩固应用二——分宝1

鲁宾逊虽然证实了自己是正确的,可是狡猾的船长并没有答应他的要求,放他回家。鲁宾逊只好跟着海盗首领到处掠夺杀戮。

有一次,他们获得了很多宝贝,海盗首领非常高兴,对手下8个小海盗说,这些宝贝都给你们了,你们自己处理吧,没想到小海盗平时都抢惯了,一拥而上,有人拿得很多,有人很少,甚至有人一件宝贝也没拿到,看到小海盗们乱哄哄的样子,海盗首领非常生气,就想惩罚一下那些贪婪的海盗,机会终于来了!有一次:海盗们又获得了73件宝贝,海盗首领又叫8个小海盗自己分。且规定:1、必须分完。2、若某人拿10件或10件以上的宝贝,说明他是个过分贪婪的人,就把他扔进大海喂鲨鱼。

海盗们是否都能逃过这一劫呢?小组讨论后派代表说说想法,其他同学可以补充。无论怎样分,总有一个海盗至少会拿到10件,这个海盗怎么办呢?学生自由谈看法。

师:正在海盗们担心的时候,事情有了转机,聪明的鲁宾逊趁着天黑偷偷地把一件宝贝扔进大海,现在只剩下72件宝贝,大家都平安无事。

三).巩固应用三——分宝2

师:海盗们终于逃过一劫,海盗首领回到自己屋里,闷闷不乐,夫人问他为什么不开心,海盗首领如实相告,夫人说是不是有人把一件宝贝扔到海里去了,海盗首领如梦方醒,决心下一次不再上当,又是在一个风急天黑的夜晚:海盗们获得了79件宝贝,首领还是要8个小海盗自己分,规则不变,还警告,79件宝贝已数得清清楚楚,谁要是作弊,也要受到惩罚。

师:小海盗们大惊失色,心想这下可能真的逃不过去了,只有聪明的鲁宾逊镇定自若,站出来对海盗首领说,既然宝贝比上次增加了6件,能不能把限定的10件提高1件?海盗首领心想,宝贝增加这么多,而限定只提高1件,还是肯定有人会受到惩罚,就同意了小海盗的请求。你认为首领的想法对吗?说说你是怎样想的。

学生先小组讨论,然后再叫几个学生来说说是怎样想的。老师再对学生的思路进行梳理。

以上我们所碰到的问题是什么问题?他的解答或证明的方法是怎样的?你能否找到被分的物品数和抽屉数?

师:靠着鲁宾逊的聪明才智,事情终于风平浪静,在以后的日子里鲁宾逊自己的智慧赢得了海盗首领的信任,有了独自驾驶小艇的权利,借着海盗首领拜访朋友的机会,鲁宾逊驾着小艇逃到了一个无人的荒岛,并搭救了一个野蛮人,起名“星期五”,有一天,他们俩无所事事,玩起了游戏。

四).巩固应用4——摸球游戏

他们用一个盒子,里面装有同样大小数量相同的红、黄、蓝球各若干个,两人各自摸到自己的盘子里,想一想,最少要摸几次,才能保证一定有2个是同色的?

让学生讲讲思路,老师再对学生的思路进行梳理。

四.拓展延伸

鲁宾逊的故事今天先讲到这里,通过今天的学习你有什么收获?

五.布置作业

每人编2道抽屉类问题作为今天的作业,让自己的同桌来证明或解答。

【教学内容】

《义务教育课程标准实验教科书数学》六年级下册第68页。

【教学目标】

1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过抽屉原理的灵活应用感受数学的魅力。

【教学重点】

经历抽屉原理的探究过程,初步了解抽屉原理。

【教学难点】

理解抽屉原理,并对一些简单实际问题加以模型化。

【教具、学具准备】

每组都有相应数量的盒子、铅笔、书。

【教学过程】

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知

(一)教学例1

1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)

【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

是:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1),

师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:总有是什么意思?

生:一定有

师:至少有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考组内交流汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着总有一个盒子里一定至少有2枝,先平均分,余下1枝,不管放在那个盒子里,一定会出现总有一个盒子里一定至少有2枝。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,

生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

【点评】教师关注了抽屉原理的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

2.解决问题。

(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

(学生活动独立思考 自主探究)

(2)交流、说理活动。

师:谁能说说为什么?

生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

生2:我们也是这样想的。

生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。

师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。

师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)

师:同位之间再说一说,对这种方法的理解。

师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的理解

生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。

师:同学们都有这个发现吗?

生众:发现了。

师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本 余1本 (总有一个抽屉里至有3本书)

7本 2个 3本 余1本(总有一个抽屉里至有4本书)

9本 2个 4本 余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

52=2本1本(商加1)

72=3本1本(商加1)

92=4本1本(商加1)

师:观察板书你能发现什么?

生1:总有一个抽屉里的至少有2本只要用 商+ 1就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+ 2就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是商+1还是商+余数呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。

生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。

师:同学们同意吧?

师:同学们的这一发现,称为抽屉原理, 抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1, 而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为54=11

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为94=21

四、全课小结

【点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类抽屉问题的一般规律,使学生进一步理解掌握了抽屉原理。

以上就是小编为大家整理介绍的关于抽屉原理教学案例以及抽屉原理教学设计9篇的相关资讯,希望大家喜欢,可以为大家带来帮助。想要了解更多详情,请多多关注。

3、《抽屉原理》教案

<<抽屉原理>> 教学设计

【知识技能】
1.理解最简单的抽屉原理及抽屉原理的一般形式。

2.引导学生采用操作的方法进行枚举及假设法探究。

【过程方法】
经历抽屉原理的探究过程,初步了解抽屉原理。

【情感态度价值观】
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。
【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教学过程】
一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

4、《抽屉原理》优秀说课稿

《抽屉原理》说课稿
今天我将要为大家讲的课题是《抽屉原理》。
首先,我对本节教材进行一些分析:
一、教材结构与内容简析
本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。
二、 教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,制定如下教学目标:
1 、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2 、能力训练目标:
1)、会用“抽屉原理”解决简单的实际问题。
2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。
3 、个性品质目标:
通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。
三、 教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、 教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。
五、 学法
教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。
六、 教学程序及设想
1、由鲁宾孙航海故事 引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
本题从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

5、《春晓》欣赏教学案例教学设计教案教学设计

《春晓》欣赏教学案例设计

学习内容:《春晓》选自人音社义务教育课程标准实验教科书音乐七年级14册

《春之歌》选自浙教版义务教育初级中学音乐课本第六册

学习主体:初一年级学生

学习课时:第一课时

学习目标:

1、欣赏《春之歌》、《春晓》,能够在聆听后对音乐主题、结构、音色(人声、乐器)等留有印象,并能根据个人的认识对作品的创作手法进行评价。

2、尝试以“春”为主题进行音乐创作,并以图形谱的方式记录自己创作的音乐。

3、能够从“春”为主题的音乐作品中感受、体验人与大自然和谐相处的快乐,乐于参与表现创造“春”的音乐活动。

学习重点:

欣赏《春之歌》、《春晓》,能够在聆听后对音乐主题、结构、音色(人声、乐器)等留有印象,并能根据个人的认识对作品的创作手法进行评价。

学习难点

尝试以“春”为主题进行音乐创作,并以图形谱的方式记录自己创作的音乐。

教学流程及设计意图

一、说春:营造学习氛围

师:古人云:一年之计在于春。的确,春天是个美好的季节。同学们,你们还记得朱自清先生笔下的《春》吗?

(师生配乐齐诵一、二自然段)

师:那么,你喜欢春天吗,为什么?

生:春天充满着生机。

生:春天可以放风筝。

生:春天到了,可以脱去厚厚的冬装,换上漂亮的春装……

(点评一:从文学的角度,运用诵、说的情景导入,营造春天来了的氛围。并且为后面的音乐欣赏作了情感铺垫,学生急切地想聆听春天的音乐。)

二、品春:感受春天的意境

1、以《春天来了》的片段音乐作为欣赏序曲,利用多媒体课件边听音乐边欣赏画面。

这一环节主要让学生感受此段音乐的情绪及表现的内容。

师:同学们,你能感受到此段音乐所表现的内容吗?

生:冰雪融化的情景。

生:万物复苏的情景。

生:人们愉快的心情。

师:生动地表现了大地回春、春意盎然的景象及其带给人们的那种惬意、舒适的内心

感受。让我们一起来哼唱其中的主要旋律。

(师生用轻柔声演唱,还可用竖笛或口琴演奏)

师:请同学们再一次去感受春天的气息。(观看风景录相,复听)

(点评二:音乐教育的根本方式是以情感人,以美育人。用视听结合的手段,优美的音乐配上优美的画面,使学生在潜移默化中从心灵深处感受到春之美,大自然之美。并采用欣赏与演唱、演奏相结合的方式,加深美的体验。)

2、以“春”为主题进行活动交流

师:你看到春天的景色了吗?请同学们画画春天的画,背背春天的诗歌,唱唱春天的歌曲。

生:各自活动后展示、评价

(点评三:音乐教育如果与其他艺术能相互连通,互相迁移,就能提高其综合艺术之审美能力,给学生以深刻的审美体验。此活动旨在加强音乐与文学、美术等艺术形式的联系,通过画画、唱唱、诵诵等实践活动,使学生真切地感受春天的美景及其并将它表现出来。而且还发挥了学生的特长,培养其综合思维能力。)

3、欣赏《春晓》,听辨人声,学习图形谱。

师:刚才我们齐诵了唐代诗人孟浩然的诗《春晓》。这首小诗,初读似觉平淡无奇,反复读之,便觉诗中别有洞天。整首诗像行云流水一般平易自然,却悠远深厚,给人无穷的想象。青年作曲家陈怡把此诗谱写成了一首出色的无伴奏合唱曲。它充分发挥人声的表现力,不仅用歌声,还用不同的词,以似谈非谈、似唱非唱的声音造成音色变化来描绘意境和场景。请同学们边听边注意它用人声模拟了哪些声音。

(师生共同欣赏《春晓》)

生:风雨声。

生:京剧伴奏的声音。

生:鸟鸣声……

师:除了人声以外,我们还可以利用乐器声或生活中一些物品发出的声音来模拟自然界中的声音来描绘意境和场景。

(师生共同欣赏《春晓》图形谱,并模仿)

(点评四:音乐是非语义的信息,它的这种自由性、模糊性和不确定性特征给人们对音乐的理解与表现提供了想象、联想的广阔空间。此段教学先从文学的角度评析《春晓》,再简介歌曲并欣赏,使学生逐步进入其悠远的意境之中。通过欣赏,感受人声、乐器声的音色及其丰富的表现力,并学习用形象简易的记谱方法把它记录下来。提高了学生对音乐的听辨能力及丰富的想象力。)

三、戏春:创作春天的音乐

教师指导学生选择素材进行以春为主题的音乐创作,并且小组合作进行表演。

(点评五:基础音乐教育的任务之一就是通过提供给学生感受音乐、表现音乐、创造音乐的机会,使学生主动参与到音乐实践活动之中,并在音乐实践活动之中学习最基本的音乐文化知识技能技巧,以培养学生的音乐兴趣和爱好。本环节把欣赏与表现、创造充分结合,使学生在参与实践中体验到音乐带来的快乐,从精神上产生愉悦和美感。而且培养了学生的创造力、表演才能以及团结合作的精神,使课堂气氛达到高潮。)

四、悟春:揭示春天的内涵

师:请你说一、二句赞美春天的话。

生:万紫千红总是春。

生:春天是美好的,生活是美好的……

师:春天是恬静的、活泼的、绚丽的。它属于我们大家。希望同学们能珍惜美好春光,愉快学习、健康成长。请同学们在课后邀上朋友一二,一起去踏青。并且收集有关春的艺术作品,包括文学、美术、音乐、摄影、雕塑等,举行一个交流会。

(点评六:欣赏音乐还应挖掘作品的思想内涵。通过赞春,使学生感受春之美、生活之美、生命之美,从而产生热爱自然、热爱生活、热爱生命的情感。课外延伸的内容,把学习从课内延伸至课外,让学生进一步体验、感受春天给人带来的美感,并得到更深的感悟。)

点评:

提倡学科综合,是基础教育课程改革的一种基本理念。基础音乐教育以审美教育为主旨,它不是简单的传递知识的过程,而是一种情感交流活动。音乐欣赏在音乐教学内容中占很大的比例。在音乐欣赏中倡导“综合”的理念不仅有益于改变人格的片面化生成而向人格的完整化和谐发展,还能开阔学生的文化视野,丰富课堂形式,使音乐课堂变得有声有色,提高中学生学习音乐的兴趣。更能发展学生的形象思维和抽象思维能力,提高综合文化素质。

《春晓》是人音版义务教育课程标准实验教科书音乐七年级14册中的欣赏曲目,《春之歌》选自浙教版义务教育初级中学音乐课本第六册。本案例设计者不仅注意了学科综合,而且在教学中以“春”为主线,把这两个内容组合在一起,让学生通过诵读诗歌、唱歌曲、听音乐、看画面等综合活动,多方位地来感受和体验春之美,进而进行有关春的音乐创作来表现和创造春之美,取得了较好的效果。

6、古诗锄禾教学案例 古诗锄禾教学教学设计

古诗词两首古诗锄禾教学案例,这两首诗词是解释“古诗”的意思为教学目标,快来看看吧!

1.学会本课生字,理解生字组成的词语。

2.能正确、流利、有感情地朗读课文、背诵课文。

3.使学生懂得粮食的来之不易和农民劳动的辛苦,要尊重农民,爱惜粮食。初步了解诗人所反映的当时的不平等的社会现实。

教学重点难点:识字、写字、朗读、背诵。

教学具准备及辅助活动:生字卡片、插图、小黑板

主要板书计划

20 古诗两首

锄禾 悯农

日当午 汗滴 春

一粒 盘中餐 辛苦

秋 万颗

饿 死

作业设计安排:

课内:描红、仿影、临写、朗读

课外:背诵课文

第一课时

一、谈话导入

1、小朋友们,你们还记得我们学过哪些古诗吗?能背诵吗?

2、今天我们再来学习两首古诗。板书:古诗两首。解释“古诗”的意思。诗歌以“首”为单位。

3、先学《锄禾》

二、初读指导

1、板书:锄禾,领读。解释字意。

2、教师范读、领读全诗。

3、自读课文,圈出生字词。教师用小黑板揭示:锄禾当午粒粒辛苦盘皆

(1)自由拼读,读准字音。

(2)指名认读,提醒学生前鼻音的字。

(3)怎么记住这些字?学生自主学习,然后交流。

4、指导朗读,注意重音和停顿。

5、自由读课文,指名朗读,相机指导。

三、精读训练

1、指导看书上的图。这幅图上,天空中、地面上各画的什么?自由说说图意。

2、当众交流。

3、教师讲“当”、“正是”等字词意思。板书:日当午汗滴盘中餐辛苦

4、讲解。

5、对照板书练习背诵。

四、作业

1、给下面的字加上偏旁后再组词。

2、读拼音,写汉字。

3、用“辛苦”说、写一句话。

4、用自己的话讲〈锄禾〉的意思。

5、背诵〈背诵〉。

第二课时

一、复习检查

1、朗读《锄禾》。

2、用自己的话把《锄禾》这首古诗的意思讲一讲。

二、初读指导

1、板书课题,领读。农民什么地方值得人们同情呢?

2、教师范读,领读。

(1)自读课文,圈出生字词。收闲田农夫粟犹自由拼读,读准字音。熟记、练写生字。

(2)指导朗读,注意多音字,重音和停顿。

(3)自由读课文,指名朗读,相机指导。

三、精读训练

1、教师介绍粟。

2、学生查字典,弄懂“无”和“犹”的意思。

3、用自己的话把这首诗的所以讲一讲。同桌试讲,共同纠正。结合讲解板书:春一粒秋万颗饿死

4、检查试讲情况,指名讲解。

5、观察课本上的插图,说说图意。

6、为什么丰收农民还要饿死呢?

7、对照板书练习背诵。

四、作业

1、画去括号内不恰当的拼音。

2、解释。

3、诗句中“一粒”的“粒”表示(),“万颗”中的“万”表示()。

4、用自己的话讲《悯农》的诗意。

5、背诵《悯农》。

第三课时

一、复习检查

1、朗读课文。

2、指名用自己的话讲〈锄禾〉、〈悯农〉的意思。

3、背诵〈锄禾〉、〈悯农〉。

4、再次朗读〈古诗两首〉,想:这两首诗有什么共同的地方?

二、写字指导

1、出示生字:禾午粒辛苦农收闲夫。

2、这几个字里,你认为哪几个比较好写?说说你是怎么写好的。学生自学后逐字讲每个字写时的注意点,教师根据学生的回答作适当的补充和小结。

3、按笔顺描红。

三、作业

1、朗读课文,背诵课文。

2、用自己的话说说这两首诗的意思。

3、选择一首古诗,用自己的话把诗意写下来。

以上信息来源于网络,想要了解更多的信息,请来关注吧!

7、创新教学:惊弓之鸟教学设计案例教学反思

文章摘要:本文章的主要内容是关于创新教学:惊弓之鸟教案设计二_课堂实录_案例_教学反思,欢迎您来阅读并提出宝贵意见!

某特级教师在一次讲学中提到了“块状教学”这个概念。从此,我在阅读教学中开始模糊地向往“块状教学”。

我想,“块状教学”这个概念是相对于“线形教学”提出来的。“线形教学”可以引进多种教学策略,包含多种教学风格,但总体框架结构上有一个共同特点,就是以情节为主线,以问题为连接点,以逐段顺序讲读为基本操作方式。从个例来分析,其中不乏上乘之作。但作为一种模式来分析,其最大的劣势在于教师“把”得过多,“圈”得太牢,学生则亦步亦趋地跟着老师走。

我所向往的“块状教学”不同于被张伟老师形容为泥淖的“条块分割式”教学。就是在讲读课文之前,单设一节课识字、学词、分段、概括大意。或即使不单设一节课,也会在一节课中拿出一段时间,进行上述教学活动。这种以各项机械语文知识为单位的“块状教学”虽步骤清晰,操作性强,但弊端也显而易见,这里不再赘述。

我所向往的“块状教学”也不同于周一贯老师在《阅读教学课堂优课论》里所介绍的“板块研读”。他所提到的“板块”,是指课文中比较集中而又相对独立,由问题情境形成的结构大部件。例如《田忌赛马》一课就可以把课文分成三大板块进行研读。

第一板块第2自然段

:为什么第一次田忌赛马失败了﹖

第二板块第12~第16自然段

:为什么第二次田忌赛马却胜利了﹖

第三板块第3~第11自然段

:这“转败为胜”是怎样“转”过来的?

这种“板块研读”的最大优点在于避免了教师面面俱到的分析,避免了烦琐简单的串联式提问。教程变细密为宽松,学生有充分的时空进行自悟式的钻研和小组讨论。但这种“板块研读”归根结底仍是以情节为中心,以思维训练为核心,而不是以学生感悟为中心。它忽略了对“听、说、读、写”四种语文能力的集中性培养。

那么,我心目中的“块状教学”到底是什么样的呢﹖全国著名特级教师左友仁老师的《航天飞机》一课,贾志敏老师的《两个名字》一课均给了我极大的启发。以“听、说、读、写”四种语文能力的培养为单位的“块状教学”在我脑海里逐渐清晰起来。2001年2月28日,我承担了余杭市的公开课,所选的是《惊弓之鸟》这篇课文。说实话,这篇课文的教案和课堂实录很多,但我都把它们搁置在了一边,我想凭年轻人的冲动与勇气“瞎摸索”一回。我苦思冥想,尽量让我的设计方案包括一些具体操作方式

符合我的教学设想,即以“听、说、读、写”四种语文能力的培养为单位把课堂划分成若干块。

具体到《惊弓之鸟》的第一课时,可分成三块:

第一块:尽情地“读”。语文课要以读为主,我愿意花15~20分钟的时间让学生来读。我和学生商量,我们该怎么读才能读得过瘾,读得开心。学生各抒己见,有的说自个儿“美读”,有的说分角色读,有的说表演读等等。这时候,我不失时机地向他们郑重推荐一种新的表演读的方式——“双簧”读一人有感情地朗读课文,一人对口形并配合以动作神态

。学生听了之后,都兴奋不已,跃跃欲试。这时我提醒他们:“不管选用哪一种方式来读,都先要自己试一试,练一练,体会一下。等一会儿,请你说一说你觉得哪一句话最难读,感情最难把握。”我觉得这个问题具有一箭双雕之妙,既集中力量突破了朗读难点,又使学生在陈述理由的过程中自然而然地理解了课文中人物的情感变化。接着,学生可以自由选择伙伴,自由选择朗读方式。练习过程愉快而又紧张,因此,汇报表演时高潮迭起。最后,教师和学生互换角色读,师生双方都很投入,在朗读中获得了一种愉悦和满足。

大雁报

第二块:尽情地“说”。我通过一则想像性报道,把学生引入到了一个具体的生活情境当中。这则报道是这样的:

本报讯昨日一大雁飞经魏国,魏国著名射手更羸人类

竟不用箭就将我们的同胞活活“射”死。据目击者讲,当时,更羸左手拿弓,右手拉弦,只听得嘣的一声响,大雁就直往上飞,拍了两下翅膀,忽然从半空中直掉下来。由此看来,更羸是具有魔法之人,杀雁凶手必更羸无疑。

据悉,死者的母亲已准备上诉,状告更羸伤害野生动物。至于结果如何,本报将追踪报道。

记者

小雁

学生看了之后异常兴奋。生活中的真实状况是,看了报纸之后,总会很自然地随便聊几句,发表自己的观点,交换意见。因此我对学生说:“你们看了这则报道之后,有什么想法,就大胆说出来。”大多数学生认为这则报道失实,更羸并没有魔法,那只大雁也不是被射下来的,而是被弦声吓下来的。于是我顺势表示疑问:“那你怎么解释当时目击者所看到的景象呢?也就是说,大雁听到嘣一声响后,为什么会从空中直掉下来﹖”“一石激起千层浪”,学生说得很起劲,有的说得条理清楚,有的说得逻辑混乱。因此,针对学生的能力差异,为了规范他们的“说”,我出示了一段话对他们进行引导:“大雁之所以从空中直掉下来,是因为____。大雁的伤口之所以裂开来,是因为_____)。大雁之所以扑着翅膀忙往上飞,是因为______。大雁之所以听到嘣的一声响后心里害怕,是因为_____。”学生在这种有所帮助的“说”中或多或少领会了关联词在表意过程中所起到的作用。

接着,我请学生以律师的身份为更羸进行辩护。先小组讨论,再分组辩护。学生立即投入到老师设定的角色中,为更羸辩护起来。大多数学生认为大雁的死不能完全归罪于更羸,大雁的死跟以前射伤大雁的猎人有关,跟它的同伴有关,跟魏国大王有关,跟自己的心理素质有关……为了让自己的观点得到同学和老师的认可,他们纷纷回到课文当中寻找依据,整场辩论有理有据,精彩纷呈。为了使学生的思维在充分扩散的时候得到适当的聚合,我又问学生:“你觉得到底是谁害死了大雁﹖”这个问题掀起了课堂中第二次辩论高潮。

第三板块:尽情地“写”。学生的思维在辩论阶段完全被激活了,紧接着,我趁热打铁让学生以“记者小雁”的身份来写一则追踪报道。我没有提什么要求来限制他们,惟一的说明就是想怎么写就怎么写。从最后的实际效果来看,学生在原先辩论的基础上,充分发挥了自己的想像力,这则追踪报道写得很精彩,更为重要的是,他们写得很开心。

这种以“听、说、读、写”四种语文能力为单位的“块状教学”在我个人看来,具有以下优势:

1.有利于教师进一步钻研教材,创造性地设计教学方法。要使学生长时间地保持较浓的兴趣,自动投入到“听、说、读、写”的训练当中,并且不脱离课文这个媒介,教师必须钻研教材,挖掘训练“块”,设计出具有强大生成性的教学方法。如创设各种交际情境。

2.学生的学习兴趣、注意力以及智力不会消耗在经常性的环节转换和思维变换中,其各项语文能力得到了集中培养。

3.语文课的中心任务得以被顽强地保护。在这种“块状教学”里,语文课很难被上成“情节分析课”、“思想教育课”、“常识课”以及各种华而不实的所谓“语文活动课”。


内容概括:这篇介绍了关于创新教学《惊弓之鸟》教学设计二,惊弓之鸟,希望对你有帮助!

8、爷爷和小树教学案例 爷爷和小树教学教学设计

【教学目的】

1、 学会5个生字和一个词语。

2、会认8个字。

3、正确、流利的朗读课文。

4、教育学生要保护环境,爱护花草树木,爱护大自然。

【教学重点】“暖和的衣裳”“绿色的小伞”指的是什么。

【教学手段】利用多媒体电脑教学。

【教学准备】自制课件、生字卡片、小红花。

【教学过程】

一、复习旧知,导入新课

1、导入:同学们,上节课我们学习了《爷爷和小树》在篇课文的生字并初读了课文。现在请大家来认读生字。看谁认得快?(指认5个生字)

2、今天这节课,我们就继续学习(齐读课题《爷爷和小树》)

3、复习“小”。

⑴ (遮住课题“小”)问:你还记得这是什么字吗?(齐读“小”)对吗?谁来当当小老师,带着大家读读它的音。(指名读,齐读)

⑵ 课题里用“小”组的词是“小树”。(教师范读)“树”是翘舌音,要读准。“爷爷和小树”第二个“爷”是轻声。(带读,齐读)

二、检查读书

1、自由读。

过渡:上节课我们已经初读了课文,这节课我们要进行一次朗读比赛,谁读得好就可以为本组争得一朵小红花,比比哪组红花多。先请大家自己练习读一读,不会的字可以看拼音,也可以向同桌请教。

2、检查读书情况。

3、齐读课文。

4、总结小组获奖情况。

三、读讲新课

1、学习第一段。

⑴ 请小朋友齐读第一段,找找里面哪个字是这篇课文里学过的生字?(口)

⑵ 你会用“口”组词吗?课文里组的词是(门口),谁家门口?(我家门口),我家门口有什么?(我家门口有一棵小树)

⑶ 指导朗读。请你用自己喜欢的语气来读读这段话。(指读、引读)

⑷ 指导背诵。

2、学习第二段。

⑴ 过渡:(打开CAI课件,显示冬天图)这是什么季节?(冬天)(贴:冬天)

对。这就是北方的冬天,那儿的冬天可冷了,天上下着大雪,小朋友都要穿着厚厚的棉衣。在这么冷的天气里,爷爷在干什么?请女同学齐读地二段。(CAI显示飞来小花,挡住“衣裳”)同学们猜猜,被挡住的是什么字?(衣裳)

⑵ 复习“衣”字。(重点复习新笔画和新偏旁)

⑶ 提问:暖和的衣裳指什么?(板书;暖和的衣裳)(CAI显示动画图片)让学生联系动画图片,理解暖和的衣裳就是稻草。

⑷ 扩散思维:你还会说“暖和的( )”(CAI显示“暖和的( )”句式)(让学生自由说,只要词语搭配恰当)

⑸ 问:穿上暖和的衣裳后,小树怎么样?(板书:不冷)

⑹ 指导朗读:用你自己喜欢的语气来读。

⑺ 指导背诵。

四、学习第三段

1、过渡:冬天爷爷给小树穿上暖和的衣裳,小树不冷了。冬天过去了,春天来了,小树长出了嫩绿叶子。那么夏天小树又长得怎么样?它又是怎样对爷爷的呢?(男生齐读第三段)

2、提问:小树是怎样做的?(板书:绿色的小伞)

3、指导读:撑开。

4、绿色的小伞是什么?(CAI显示动画图片)让学生看动画图片,理解绿色的小伞就是树冠,也就是树茂密的树叶。问:爷爷在树下怎样?(板书:不热)

5、扩散思维:你还会说“绿色的( )”(CAI显示“绿色的( )”句式)让学生自己说,只要词语搭配恰当。

学生分组讨论,自己用喜欢的语气读。

检查读,背的情况。

五、环保教育

1、同学们,爷爷这么爱护小树,那我们应该怎样做?(也要爱护小树)小朋友你们再看看我们的校园怎么样?(很美丽)那你们又应该怎样做呢?

(CAI显示学校绿化地带画面,让学生在优美的音乐中欣赏美丽的校园风景,讨论后再自由发言。)

2、小结。

刚才,小朋友个个都说得很好,相信你们以后也会做得很棒,那么我们的校园会更美,更绿。你们就很自豪地对别人说:我们的学校是一个美丽的大花园。

六、总结课文

1、齐读全文。(要求:有感情、有表情地朗读)

2、总结:今天我们学习了《爷爷和小树》,小朋友都明白了要爱护小树,爱护花草,爱护大自然的一切。

3、作业:做一份关于保护环境的手抄报。

【反思】

《爷爷和小树》这篇课文以一个儿童的口吻生动地说出人和树的关系:人类保护树木,树木为人类造福。从冬天和夏天两个方面写了小树与爷爷的关系,渗透着人与自然和谐相处的思想。文字活泼,富有情趣,且配有两幅生动形象的插图,符合低年级儿童的审美情趣和阅读心理。

我在上这节课时活化了插图,充分利用课文插图,让学生看看图,读读文,读读文,看看图,联系生活实际说一说,,这样有意识地引导学生在生活中学习语文,使孩子深切地感受到:语文离他们很近。

在学生字时,让学生想想你在哪里看到过或用到过这些字。让学生到生活中去找这些字,“让语文走进生活,在生活中学习语文。”学生说得很好,“我在和爷爷说话的时候要用到爷。”“我在开门、开窗的时候要用到开。”这样不但巩固了所学的生字,更在生活中运用了这些生字。通过这一过程,学生尝到了发现的喜悦、识字的快乐。孩子们也在这寻找、记忆、交流中得到了发展。 我的课堂上的不足,比如:我急于把自己准备好语言展示给学生,展示给听课的老师,而忽略了来自学生的精彩回答,有些过渡语设计得太长,太繁顼,不够简练、明白。

第二就是对于课堂中的每个环节的时间掌握不好,使得在学生字时生怕用时过长,在其中的小环节中只是流入形式。

再一点就是平时的课堂训练不到位,学生回答问题不够踊跃,头一次有这么多的老师来听课,本身就紧张,可能传达给学生的信息也使学生们有些紧张,使得课堂氛围有些拘谨。

听了其他优秀老师的课后,深知自己的差距。虽然有人说:教学是一门令人永远存有遗憾的艺术,没有完美的课堂。但我希望我能尽量减少遗憾,争取更好。

【评析】

《爷爷和小树》这篇课文以一个儿童的口吻生动地说出人和树的关系:人类保护树木,树木为人类造福。从冬天和夏天两个方面写了小树与爷爷的关系,渗透着人与自然和谐相处的思想。文字活泼,富有情趣,且配有两幅生动形象的插图,符合低年级儿童的审美情趣和阅读心理。 积极的情感能够使语文课堂充满人文魅力:兴趣是自主、探究学习的源泉。在教学中杨老师以激趣为手段,为学生创设主动学习的情境。在轻松愉快的气氛中呈现了教学内容,避免了枯燥无味的呈现形式,调动了学习积极性。考虑到一年级学生有意注意虽然在发展,但无意注意仍然占优势。他们注意不稳定,不持久,容易被新鲜的刺激所吸引,受兴趣和情绪所支配。因此,杨老师在教学中采用了形式多样,生动活泼的方式复现生字。如:在学生字时,让学生想想你在哪里看到过或用到过这些字。让学生到生活中去找这些字,“让语文走进生活,在生活中学习语文。”学生说得很好,“我在和爷爷说话的时候要用到爷。”“我在开门、开窗的时候要用到开。”这样不但巩固了所学的生字,更在生活中运用了这些生字。通过这一过程,学生尝到了发现的喜悦、识字的快乐。孩子们也在这寻找、记忆、交流中得到了发展。

以上信息来源于网络,想要了解更多的信息,请来关注吧!

9、去年的树教学(盛新凤,附教学设计说明)教学案例反思

文章摘要:本文章的主要内容是关于去年的树教学实录(盛新凤,附设计说明)_教学案例反思_实录,欢迎您来阅读并提出宝贵意见!

 

师:媒体播放——大树)听,一只美丽的小鸟坐在大树上,正动情地为大树唱歌呢,大树呢,摇曳着茂盛的枝条,正入神地听着……这是一幅多么和谐,美丽的图画呀!是吗?

生:是!

师:围绕着这只美丽的小鸟和这棵枝繁叶茂的大树,让我们一起来读一个美丽的故事。(出示课题)读!

生:去年的树

师:请同学们打开书本,让我们用自己喜欢的方式读书,你可以一个人读,可以找伙伴读,如果你想搬个凳子到讲台前来读可以吗?

生:可以。

师:让我们尽情地和课文交流、对话,看看待会儿你会有哪些收获。开始。

(学生自由朗读,教师巡视。)

师:咱们先停会儿好吗?读着读者,你有什么话想说了吗?你的感受,你的疑问,你的收获……都可以.

生:树为什么要被锯掉?

师:你有问题.

生:我有收获,我觉得树和鸟儿真是一对好朋友,鸟儿从南方回来后,发现树不见了,就千里迢迢来寻找树,他通过各种方法,最后找到了树,变成了火柴,最后火柴被点燃了。

师:你是被小鸟和大树之间的真情感动了,是吗?

生:是。

生:我想对作者提问,为什么把这篇课文取名为《去年的树》呢?

师:你读着读着有这样的问题。还有吗?

生:我发现了,鸟儿是一只十分守信的鸟。

师:这是你自己读出来的,真了不起。

生:我有一个问题,为什么树做成火柴,点燃后,鸟儿还会对灯火看那么久,还要唱起那首去年的歌?

师:同学们的问题很多,感受很多,你们真了不起啊,第一次与课文进行亲密的接触,就有这么大的收获了。让我们继续与课文交流,对话.也许你刚才的疑问,就能得到解决,你的感受,还能得到大家的共鸣呢!同学们,你们说这篇课文在语言上有什么特色,以什么为主呢?

生:对话。

师:以对话为主是吗,你快速地读读课文,数一数,课文有几组对话?

(学生默读)

师:你数出来了?有几组?

生:有四组。

师:分别有哪四组?

生:小鸟和大树,小鸟和树根,小鸟和大门,小鸟和小女孩。

(教师板书)

师:

共有四组.让我们先来看第一组对话.冬天到了,树的好朋友——小鸟,要到南方去过冬了,临走之前,一对好朋友依依惜别。树对鸟儿说……读。

生:

(齐读)

“再见了,小鸟!明年请你再会来,还唱歌给我听。”

师:

鸟儿回答……

生:(齐读)

“好.我明年一定回来,给你唱歌,请等着我吧!”

师:

你们想,这对好朋友在分别的时候是怎么对话的?请你也就近找一下你的好朋友,来练这组对话。

(学生自由找朋友练说)

师:

有些同学朝盛老师看了,

举手是表示你们想表演,想来读,是吗?哪对朋友先来?

(一组学生对话)

师:

老师发现他读的时候,

“我明年一定回来……”能告诉我为什么要这么读吗?

生:

因为他们是好朋友,小鸟答应他,语气非常坚定。

师:

真好,他是坚定地向朋友保证,明年一定会回来,还有哪对朋友想来试试?

(一组学生练读,男生模仿了大树的语气)

师:

你真像大树啊!你在模仿大树的语气是吧?

生:

因为大树的语气非常粗,是那种很成熟的感觉。

师:

不错,你的感受非常独特。从他们的对话当中,我们感觉到了,这对好朋友之间的感情是多么的…

生:深厚

师:让我们的男孩子来读大树的,像刚才的那个同学一样,读出自己的个性来,女孩子读小鸟的,我们一起来对对话,好吗?

生:好!

师:准备.

“再见了,小鸟……”

(学生男女分角色读,学生模仿语气)

师:你们这是在向朋友保证呀,坚定些,再坚定些!读!

(学生再次分角色读,女孩子语气坚定)

师:他们就这样,依依惜别,并做了约定。第二年的春天,小鸟满怀深情地回来找他的朋友大树。然而,往日朝夕相处的朋友却不见了。他着急地找了又找,问了又问。下面的三组对话,老师想让同学们在四人组里合作练读好吗?你们可以自己选定一个角色练一练。开始吧。

(学生四人小组练读)

师:这回哪一组想先向我们来展示一下?

(学生展示对话)

师:同学们,他们这一组读得怎么样?

生:好。

师:都觉得好,这样吧,你们有意见可以提,你们觉得好可以夸夸他们,跟他们直接对话,好不好?

生:我说小鸟应该读得更加焦急些,这样子还不够焦急。

师:这是你的意见,好,还有别的同学有问题,有意见提的?

生:我觉得小鸟应该读得更加活泼一点。

师:活泼是吗,哦,情感上要焦急,样子要活泼。还有吗?

生:树根应该读得更加悲伤点。因为树根和树是命运相连的,他们两个就像是好朋友一样,如果哪一方不见了或者是死去了,他们应该是很悲痛的。

师:这是你独特的体验,真了不起.好,刚才从同学们的意见中,都感觉到了,大家都觉得作为主角的小鸟的话,非常重要,应该好好地体会把握,是这个意思吗?那么就这样,让我们先来重点练读小鸟问的这三句话。(媒体播放小鸟的三句话)这样吧,你先一个人在位子上,看着屏幕自己练一练,感觉一下,体会一下该怎么读。

(

学生自由地练读)

师:想读了是吧,谁先读?任选一句读。

生:

“门先生,我的好朋友——树在哪儿,您知道吗?”

师:我听出有点焦急了。

生:

“站在这儿的那棵树,到什么地方去了呢?”

师:我感受到了他心中的那份焦急。

生:

“小姑娘,请告诉我,你知道火柴在哪里吗?”

师:你体会得真好。

生:

“小姑娘,请告诉我,你知道火柴在哪里吗?”

师:你体会得真好。还有同学还要读?

生:

“小姑娘,请告诉我,你知道火柴在哪里吗?”

师:你在为大树担心呢。

生:

“门先生,我的好朋友___树在哪儿,您知道吗?”

师:老师听出了你心中的焦急。咱们一块读好吗?

生:好。

师:第一句。

生:

“站在这儿的那棵树,到什么地方去了呢?”

师:老师感受到,大伙儿都焦急起来了。再读一次。

生:

“站在这儿的那棵树,到什么地方去了呢?”

师:你们看这边的孩子,眉头都皱起来了。老师体会到了他心中的焦急。再读第一句。

生:

“站在这儿的那棵树,到什么地方去了呢?”

师:读下去。

生:“门先生,我的好朋友___树在哪儿,您知道吗?”

师:

您知道吗?他多么想知道呀。再来一次。

生:“门先生,我的好朋友___树在哪儿,您知道吗?”

师:再读下去。

生:

“小姑娘,请告诉我,你知道火柴在哪里吗?”

师:那一声声急切的询问,流露出小鸟对大树的无限深情。读着读着,谁被小鸟的真情感动了?(学生举手示意)这样吧,谁来做一回小鸟好吗?(请两位同学)别拿书,出来.你们在教室里面,就这样,飞呀飞呀,寻找自己的好朋友大树。一边找一边问,

你在谁的跟前停下来,那个同学就做你的配角,来跟你对话,明白吗?

生:明白。

师:你可以用自己的话,你们也可以用书本上的话。好,你们去问吧。

(两位学生,在教室里随机寻找朋友对话)

师:小鸟,小鸟,找到朋友大树了吗?

生:找到了.

师:找到了?你知道了(笑)但是还没找到,是不是?找不到朋友大树,小鸟都快急疯了。让我们再来读这三句话,体会小鸟的这份焦急。齐

生:

“站在这儿的那棵树,到什么地方去了呢?”

“门先生,我的好朋友___树在哪儿,您知道吗?”

“小姑娘,请告诉我,你知道火柴在哪里吗?”

师:(随机采访)可怜的小鸟,找不到朋友大树,你心里怎么想?你的心情怎么样?

生:我的心情很焦急。

师:你焦急,你呢?

生:哦,你紧张,为大树担心。

师:我为小鸟感到悲伤。你悲伤了,你就是小鸟.

生:我也感到非常的伤心。

师:

你感到伤心,你们是不是在心里呼唤着朋友大树呀?

生:是.

师:你们是怎么呼唤的?

生:大树,你在哪儿啊?

师:你在哪儿,还有谁?

生:大树呀,大树,你到底在什么地方呀?

生:大树你去哪了?

生:大树,你快回来吧,小鸟正在等着你呢!

生:大树,难道你忘记了,咱俩有约定吗?我还要给你唱歌呢!

师:真好,同学们,小鸟对大树的这种焦急,牵挂,关心,就是奉献给大树的最最珍贵的友情,让我们再一次深入地和课文倾心地交流,对话,来体会这份情。

(出示图片)

师:(低沉地)村子里,煤油灯旁,一对好朋友又见面了。大家把书拿起来,让我们一起读最后一段。(出示最后一小节)

师:

“小鸟,睁大眼睛……”读

生:“鸟儿睁大眼睛,盯着灯火看了一会儿。接着,就唱起了去年唱过的歌给灯火听。唱完歌儿,鸟儿又对着灯火看了一会儿,飞走了。”

师:读着读着,你又有什么问题了?有那么多问题呀!

生:鸟儿看到灯火为什么还要唱去年唱过的歌?

师:好,还有那么多问题,这样吧,让我们互相之间尽情地交流对话,可以提问题,也可以解答别人的问题。你可以站起来就说。

生:我能够解答**的问题,因为在一年前,鸟儿和树是好朋友,鸟儿天天给树唱歌,树也天天听鸟儿唱歌。可见他们是那么友好,他们简直成了一对知心朋友。然而冬天过去了,鸟儿却见不到大树,只看到残留下来的树根。他费劲了千辛万苦,终于在油灯里找到了大树的化身。这时他不禁想起了,当年他和树的一幕幕.他看到了灯火,仿佛看到了大树的身影.所以,他情不自禁地唱起了去年的歌。

师:你说得真好,你说了那么长长的一段话.还谁有什么问题?

生:(同上)我还要补充一点,我觉得小鸟就是在歌颂了大树,因为灯火照亮了别人,给人间亮光,所以他在歌颂无私的奉献精神。

师:你觉得在小鸟的歌声声中,还有那种为朋友自豪的心情在里面。

生:是的。

师:你体会得真好,还有谁有问题?

生:我想问一下,鸟儿为什么两次都盯着灯火看了一会儿?

师:同学们注意到了没有?盯着灯火看了一会,后来要飞走了,他又盯着灯火看了一会。你从两个看当中,你品出什么来了?

生:灯火是火柴点燃的,火柴是大树做成的,鸟儿可能把火柴看成是灯火的孩子,他要看看大树的孩子是怎么样的。

师:他要看看清楚是这个意思吗?不同的说法可以发表,来说吧。

生:因为他对大树的友情十分深,而现在大树的生命就要到尽头了,所以要看了一会。

师:他不忍心。他饱含着深情看了一眼,是这个意思吗?

生:我觉得是小鸟想念大树,他才会对着灯火看。

师:对呀,他们多少时间没见面了?

生:(齐)一年。

师:(动情地)一年过去了,往日的朋友已变成了今天的灯火.小鸟怎么能不伤心,不忍心。他看了一会,

他看了一会,他用目光在和朋友交流感情。那同学们,还有谁要说?

生:我觉得鸟儿在沉思,因为灯火就是大树,他觉得大树当时被伐木工人砍掉的那一刻,大树心里会是怎么想的,他大树变成灯火,独自照亮别人的时候,又会是怎么想的。我觉得他是在沉思。

师:这是你的理解。还有?

生:他可能第一眼看到灯火,他可能不相信灯火就是大树变成的。他第二眼看到灯火,好像就感觉到,这个灯火就是大树。

师:对呀,他简直不敢相信,这就是他那么熟悉的朋友___大树,所以他……

生:睁大眼睛,盯着灯火看了一会。

师:当他认出来的时候,他就唱起了去年唱过的歌。后来他为什么看了一会儿,要飞走了又看了一会。

生:因为一旦火柴点燃的火烧完了,就证明大树的生命结束了。他想对他最好的朋友离别之前,再看一眼。

师:你说得真好。两个“看”当中包含了小鸟多少深情和留恋呀!同学们,经过你们刚才尽情的交流和对话,你们真正地体会到了小鸟的这种深情。同学们,这回你们就是小鸟了,你们历经了千辛万苦,终于找到了你日思夜想的好朋友大树。此时此刻,我们一起读……

(出示改写的最后一小节:把“小鸟”改成了“我”)

生:

“我睁大眼睛,盯着灯火看了一会儿。接着,我就唱起了去年唱过的歌给灯火听。唱完歌儿,我又对着灯火看了一会儿,飞走了。”

师:老师深深地被你们的朗读打动了,你们这两个“看”字,读得盛老师的情感随着你们的朗读在波动。能再读一次吗?

生:

“我睁大眼睛,盯着灯火看了一会儿。接着,我就唱起了去年唱过的歌给灯火听。唱完歌儿,我又对着灯火看了一会儿,飞走了。”(动情)

师:(深情地)亲爱的小鸟,你看见朋友了,你盯着灯火,深情地盯着灯

 

内容概括:这篇介绍了关于《去年的树》教学实录盛新凤,附设计说明,去年的树,希望对你有帮助!

10、《失物招领》教学案例精彩的教学源于精心的预设教案教学设计

把自己的想法告诉别人,又使自己的想法得以实行——这就是沟通的最终目的。沟通是双向的,甚至是多向的,沟通需要技巧、方法,它也是一种艺术。

班主任是班级的组织者、领导者、所担任的责任似父似母,面对班级几十个个性、爱好、成绩、心理特征参差不齐的学生。当好班主任首先要做好与不同学生的沟通,沟通是拉近与学生距离的最有效方法。班主任与学生沟通要想取得最佳效果,就得讲求沟通的艺术,把握不同类型学生的心理特点。我在工作实践中总结以下几种方法。

一、与后进生沟通——发现闪光点

后进生往往有一种自卑心理,因而情绪低落,对老师常表现出防御心理和对抗心理,与这些学生沟通,要发现他们的闪光点,鼓励他们抬起头来走路,树立自信心。

上期我班转来一个同学小A,他性格胆怯,学习成绩差,同学们常常戏谑他,并给他起了个绰号“小老鼠”。但是他有个很大的特点就是跑得快,去年冬运会上,他参加200M跑,获得同年级第一名,为班级争了光。在班上我大力表扬他,同学们也为他鼓掌,我在他的眼里发现了从未看见的一种自豪、自信。我抓住这一契机,课后我把他叫到办公室,与他谈心,沟通,首先对他的成绩进行鼓励,树立自信,然后激发他的进取心,如果在学习上也勇往直前,学习成绩一定会赶上去,最后他坚定地点了点头,充满信心地说:“我一定会努力的!”期末考试时,他语数都是90分以上。

二、与中等生沟通——挖掘动力点

中等生总觉得自己比上不足,比下有余,因此拼搏精神差,缺乏前进的动力。对这类学生采取“触动式”沟通方式,以“刚”克“刚”,促期猛醒。但注意的是,这种“触动”要掌握分寸,看准火候,用富于哲理性的内容激励他们,使他们能心悦诚服地接受教育。

小B头脑聪明,平时作业都能完成,但非常马虎,上课经常走神。每次考试成绩总在80分左右,成绩和在班上的表现平平。有一次开家长会,我要求孩子们把家长请到学校。其他孩子的家长都来了,只有小B的家长没到。他一个人低着头站在教室门口,想对我说什么却没有开口。开完家长会后,我把小B叫到了办公室,我还没有开口,小B的眼睛里噙满了泪水。我本想严厉的批评她,见于此,平静了一下心情,说:“你家长今天没来,肯定是有原因的,能给老师说说吗?”。她见我没有生气,情绪得到了稳定,小声地向我说明了情况:原来,她家里比较穷,爸爸和妈妈都外出打工,把她交给她的阿姨照看。可是阿姨一天忙于农活,无暇顾及她的学习。今天阿姨本打算来开家长会,可阿姨喂的3头小猪仔突然生病。那可是阿姨家的主要经济收入啊,所以……我深思了片刻,安慰她说:“你很懂事,我也知道了情况,老师不怪你。”“不过,我想你也应该知道,你爸爸妈妈外出打工挣钱是为了什么。你阿姨确实没有时间和精力管理你的学习,老师相信你自己能处理好,是吗?”从那以后,小B总喜欢和我说话了,作业更认真了,上课精力更集中了,好像变了个人似的。学习成绩进步很快。上学期期末,还居然考到了全班第二。

三.与优等生沟通——找出自省点

优等生一般比较自信,也容易自负,有时看不到自身的缺点。与他们沟通,要运用“提醒式”。在肯定成绩的同时,含蓄地指出其不足,促使他们正确地评价自己,扬长避短,向目标奋进。

我班班长小C学习成绩好,能力较强,特别是在班级管理上,他把班级管理得井井有条。在他的协助下,我班每月都被评为“校风示范班”。但在管理过程中,同学不守纪律,他就用棍子打同学,或用棍子在桌子上敲打,当我发现这一现象时,利用下课时间,我把他叫到身边,与他轻声交谈,表扬他为班级所做的贡献是老师的好帮手。他听后十分高兴,我话锋一转,委婉地对他说,打人是一种不礼貌的行为,不尊重别人,万一失手把同学打伤了,该怎么办呢?这样会给老师带来麻烦,有损班级声誉。他听了之后,脸红了,而后他自信地对我说到:“老师,谢谢您的帮助,我一定会改!”我会心的笑了。

四、与犯错生沟通——激发内心燃点

有部分学生犯了错误,一蹶不振,产生了自暴自弃的心理,与这部分学生沟通,应采取“参照式”进行“横向”与“纵向”对比,使他们认识到犯错误的原因和所犯错误的危害性,进而增强改进的信心。

前不久,本班有一位同学发现自己放在书包里的钱不翼而飞了,经过调查,发现是小D干的。同学们你一句我一句的指责讥笑。之后的几天,我发现小D每天没精打采,下课时独自坐在位子上,低着头,自己玩,与他目光相接,他马上避开,显出害怕的神情。有天放学时,我把他叫到办公室。给他讲了一个“罪犯变成教授”的故事,开导他一个人犯了错误不要紧,只要及时改正,也没有什么见不得人的。俗话说“浪子回头金不换“。老师不会瞧不起你的,他看着我轻松地笑了。

班主任工作是琐碎的,漫长的,在今后的工作中,我想念与学生的沟通方法会更多,更有艺术。